1. Which statement is correct when 18 g of oxygen O ₂ reacts with 2.0 g of hydrogen H ₂ to form water?	4. When 13.0 grams of acetylene, C ₂ H ₂ , is reacted, what mass of water, H ₂ O, is produced?
$2 \operatorname{H}_2\operatorname{O}(l) \to 2 \operatorname{H}_2(g) + \operatorname{O}_2(g)$	$2 \operatorname{C_2H_2(g)} + 5 \operatorname{O_2(g)} \rightarrow 4 \operatorname{CO_2(g)} + 2 \operatorname{H_2O(l)}$
 A) Some oxygen is left over. B) Water, H₂O, has a molar mass of 20. C) The Law of Multiple Proportions applies. D) When 18 g of O₂ reacts with 2.0 g of H₂, 20. g of H₂O is produced. 	 A) 9.00 g B) 12.0 g C) 13.0 g D) 18.0 g E) 26.0 g 5. In the reaction represented by the equation,
E) There is insufficint hydrogen for any water to form.2. What mass of H₃PO₄ is needed to completely react	$COCl_2 + 2 \text{ NaI} \rightarrow 2 \text{ NaCl} + CO + I_2$ what is the maximum weight of iodine that can be liberated from 60.0 grams of sodium iodide?
with 30. g of Ca? $3 \text{ Ca} + 2 \text{ H}_3\text{PO}_4 \rightarrow \text{Ca}_3(\text{PO}_4)_2 + 3 \text{ H}_2$	A) 25.4 g B) 50.8 g C) 102 g D) 153 g E) 203 g D) 153 g
 A) 20 g B) 49 g C) 74 g D) 98 g E) 116 g 3. When 6.000 mole of KClO₃ are reacted, how many grams of KClO₄ are produced? 	6. A mixture of 2.0 grams of hydrogen and 32 grams of oxygen is exploded and produces water. What weight of gas remains uncombined ?
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 A) 1.0 gram of hydrogen B) 1.0 gram of oxygen C) 4.0 grams of hydrogen D) 8.0 grams of oxygen E) 16.0 grams of oxygen

E) 16.0 grams of oxygen

- A) 104.0 g
 C) 415.8 g
 E) 2495 g