1.	Ammonia is produced commercially by the Haber reaction:	5.
	$N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g) + heat$	
	The formation of ammonia is favored by	
	A) an increase in pressure	
	B) a decrease in pressure	
	C) removal of $N_2(g)$	6.
~	D) removal of H ₂ (g)	
2.	Given the reaction at equilibrium:	
	$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \leftrightarrow 2 \operatorname{SO}_3(g) + \text{heat}$	
	Which change will shift the equilibrium to the right?	
	A) increasing the temperature	
	B) increasing the pressure	7.
	C) decreasing the amount of $SO_2(g)$	
	D) decreasing the amount of O ₂ (g)	
3.	Given the system at equilibrium:	
	$H_2(g) + F_2(g) \leftrightarrow 2 HF(g) + heat$	
	Which change will <i>not</i> shift the point of equilibrium?	
	A) changing the pressure	
	B) changing the temperature	
	C) changing the concentration of H ₂ (g)	
	D) changing the concentration of HF(g)	8.
4.	Given the reaction at equilibrium:	
	$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \leftrightarrow 2 \operatorname{SO}_3(g) + \text{heat}$	
	The concentration of SO ₃ (g) may be increased by	
	A) decreasing the concentration of SO ₂ (g)	
	B) decreasing the concentration of $O_2(g)$	
	C) increasing the pressure D) increasing the temperature	
	LU Increasing the temperatilite	

D) increasing the temperature

5. Given the reaction at equilibrium:

 $4 \operatorname{HCl}(g) + \operatorname{O}_2(g) \leftrightarrow 2 \operatorname{Cl}_2(g) + 2 \operatorname{H}_2O(g)$

If the pressure on the system is increased, the concentration of Cl₂(g) will

- A) decrease B) increase
- C) remain the same
- 6. Given the closed system at equilibrium:

 $CO_2(g) \leftrightarrow CO_2(aq)$

As the pressure on the system increases, the solubility of the $CO_2(g)$

- A) decreases B) increases
- C) remains the same
- 7. Given the equation representing a reaction at equilibrium:

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) + heat$

Which change causes the equilibrium to shift to the right?

- A) adding a catalyst
- **B)** adding more $O_2(g)$
- C) decreasing the pressure
- D) increasing the temperature
- 8. Given the equation representing a reaction at equilibrium:

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) + energy$ Which change causes the equilibrium to shift to the right?

- A) decreasing the concentration of $H_2(g)$
- B) decreasing the pressure
- C) increasing the concentration of $N_2(g)$
- D) increasing the temperature

13. Given the equation representing a reaction at 9. Given the system at equilibrium: equilibrium: $2 \operatorname{POCl}_3(g) + \operatorname{energy} \rightleftharpoons 2 \operatorname{PCl}_3(g) + \operatorname{O}_2(g)$ Which changes occur when $O_2(q)$ is added to this system? $H_2(g) + I_2(g) + heat \leftrightarrow 2HI(g)$ Which change favors the reverse reaction? A) The equilibrium shifts to the right and the concentration of $PCl_3(q)$ increases. A) decreasing the concentration of HI(g)B) The equilibrium shifts to the right and the **B)** decreasing the temperature concentration of $PCl_3(q)$ decreases. C) increasing the concentration of $I_2(g)$ C) The equilibrium shifts to the left and the D) increasing the pressure concentration of $PCl_3(g)$ increases. 14. Given the system at equilibrium: D) The equilibrium shifts to the left and the concentration of $PCl_3(q)$ decreases. $N_2O_4(g) + 58.1 \text{ kJ} \leftrightarrow 2 \text{ NO}_2(g)$ 10. Given the reaction at equilibrium: at constant pressure? $N_2(g) + O_2(g) + energy \leftrightarrow 2 NO(g)$ Which change will result in a decrease in the amount concentration of NO₂(g) will decrease. of NO(g) formed? A) decreasing the pressure concentration of NO₂(g) will increase. B) decreasing the concentration of $N_2(g)$ concentration of NO₂(g) will decrease. C) increasing the concentration of $O_2(g)$ D) increasing the temperature 11. Given the reaction at equilibrium: $A(g) + B(g) \rightleftharpoons AB(g) + heat$ The concentration of A(g) can be increased by $H_2(g) + I_2(g) + heat \leftrightarrow 2 HI(g)$ A) lowering the temperature What will be the result of an increase in B) adding a catalyst temperature? C) increasing the concentration of AB(q)D) increasing the concentration of B(q)will increase. 12. Given the equation representing a system at equilibrium: will decrease. $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + energy$ [HI] will increase. Which changes occur when the temperature of this will decrease. system is *decreased*? A) The concentration of $H_2(g)$ increases and the system at equilibrium at constant pressure? concentration of N₂(g) increases. B) The concentration of $H_2(g)$ decreases and the

- concentration of N₂(g) increases. C) The concentration of $H_2(g)$ decreases and the concentration of $NH_3(g)$ decreases.
- D) The concentration of H₂(g) decreases and the concentration of NH₃(g) increases.

What will be the result of an increase in temperature

- A) The equilibrium will shift to the left, and the
- B) The equilibrium will shift to the left, and the
- C) The equilibrium will shift to the right, and the
- D) The equilibrium will shift to the right, and the concentration of NO₂(g) will increase.
- 15. Given the equilibrium reaction in a closed system:
 - A) The equilibrium will shift to the left and [H₂]
 - B) The equilibrium will shift to the left and [H₂]
 - C) The equilibrium will shift to the right and
 - D) The equilibrium will shift to the right and [HI]
- 16. What occurs when the temperature is increased in a
 - A) The rate of the forward reaction increases, and the rate of the reverse reaction decreases.
 - B) The rate of the forward reaction decreases, and the rate of the reverse reaction increases.
 - C) The rate of the endothermic reaction increases.
 - D) The rate of the exothermic reaction decreases.

17. Given the system at equilibrium:

 $PbCO_3(s) \leftrightarrow Pb^{2+}(aq) + CO_3^{2-}(aq)$

How will the addition of Na₂CO₃(aq) affect [Pb²⁺](aq) and the mass of PbCO₃(s)?

- A) [Pb²⁺](aq) will decrease and the mass of PbCO₃
 (s) Will decrease.
- B) [Pb²⁺](aq) will decrease and the mass of PbCO₃(s) will increase.
- C) [Pb²⁺](aq) will increase and the mass of PbCO₃
 (s) will decrease.
- D) [Pb²⁺](aq) will increase and the mass of PbCO₃ (s) will increase.
- 18. Given the solution at equilibrium:

 $PbI_2(s) \leftrightarrow Pb^{2+}(aq) + 2I^{-}(aq)$

The addition of which nitrate salt will cause a decrease in the concentration of $I^{-}(aq)$?

A) Pb(NO3)2	B) $Ca(NO_3)_2$
C) LiNO3	D) KNO3

19. When a chemical reaction is at equilibrium, the concentration of each reactant and the concentration of each product must be

A) constant	B) variable
-------------	-------------

C) equal

D) zero

- 20. Which statement describes a chemical reaction at equilibrium?
 - A) The products are completely consumed in the reaction.
 - B) The reactants are completely consumed in the reaction.
 - C) The concentrations of the products and reactants are equal.
 - D) The concentrations of the products and reactants are constant.
- 21. Given the equation representing a closed system:

 $N_2O_4(g) \leftrightarrow 2NO_2(g)$ Which statement describes this system at equilibrium?

- A) The volume of the NO₂(g) is greater than the volume of the N₂O₄(g).
- B) The volume of the NO₂(g) is less than the volume of the N₂O₄(g).
- C) The rate of the forward reaction and the rate of the reverse reaction are equal.
- D) The rate of the forward reaction and the rate of the reverse reaction are unequal.

Answer Key LECHAT-FIRST PRACTICE.

- 1. <u>A</u>
- 2. <u>B</u>
- 3. <u>A</u>
- 4. <u>C</u>
- 5. <u>B</u> 6. <u>B</u>
- 6. <u>B</u> 7. <u>B</u>
- 8. <u>C</u>
- 9. **D**
- 10. **B**
- 11. <u>C</u>
- 12. **D**
- 13. <u>B</u>
- 14. **D**
- 15. <u>C</u>
- 16. <u>C</u>
- 17. <u>B</u>
- 18. <u>A</u>
- 19. <u>A</u>
- 20. **D**
- 21. <u>C</u>