		ASSIGN	ME	NT		
72.	Given the reaction: $2A1 + 3H_2SO_4 \rightarrow 3H_2 +$ The total number of moles of H_2 completely with 5.0 moles of Al (1) 2.5 moles (2) 5.0 moles	Al ₂ (SO ₄) ₃ SO ₄ needed to react is (3) 7.5 moles (4) 9.0 moles	79.	Given the equation: $I + I \rightarrow I_2$ As the atoms of the iodine re the stability of the iodine (1) decreases (2) increases	act to fo (3)	rm molecules of iodine, remains the same
73.	 (2) 5.6 moles (4) 5.6 moles (4) 5.6 moles (4) 5.6 moles (5) 100 moles (4) 5.6 moles (5) 100 moles (4) 5.6 moles (5) 100 moles (5) 100 moles (6) 100 moles 		 80. Which properties are characteristic of the Group 1 metals? (1) high reactivity and the formation of stable compounds (2) high reactivity and the formation of unstable compounds (3) low reactivity and the formation of stable compounds (4) low reactivity and the formation of unstable compounds 			
	(1) 1:3 (2) 3:1	(3) 2:3 (4) 3:2	81. Given the electron dot formula:			
74.	4. Given the reaction: $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ What is the maximum number of moles of H_2O that can be produced when 2.0 moles of NH_3 are completely reacted?		H:X: 			
	 (1) 1.0 (2) 2.0 	(3) 3.0(4) 6.0		for the electrons that form th (1) F	e bond? (3)	I
75.	Given the reaction: $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2$ The total number of grams of Cu of Cu(NO ₃) ₂ is (1) 32	+ 2NO + 4H ₂ O 1 needed to produce 1.0 mole (3) 128	82.	(2) ClWhich formula represents a degree of ionic bonding?(1) PBr₃	(4) substanc (3)	Br we with the greatest NH ₃
	(2) 64	(4) 192	02	(2) MgBr ₂	(4) · · · ·	co
76.	Given the reaction: $2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$ What is the total number of grams of $O_2(g)$ needed to react completely with 0.50 mole of $C_2H_2(g)$?		83.	(1) KBr(2) HF	(3) (4)	MgO BrCl
	(1) 10. g (2) 40. g	(3) 80. g (4) 160 g	84.	Which is the formula of an io	onic con	ipound? CH-OH
77.	Given the reaction: $Cu + 4HNO_3 \rightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$ What is the total mass of H ₂ O produced when 32 grams of Cu is completely consumed? (1) 9.0 g (3) 36 g (2) 18 g (4) 72 g		85.	 (2) CO₂ (3) Oligonia (4) NaOH 5. Which compound in the solid state has a high melting point and conducts electricity when it is liquefied? (1) carbon dioxide (3) hydrogen chloride (2) silicon dioxide (4) potassium chloride 		
78.	 8. Which statement is true concerning the reaction N(g) + N(g) → N₂(g) + energy? (1) A bond is broken and energy is absorbed. (2) A bond is broken and energy is released. (3) A bond is formed and energy is absorbed. (4) A bond is formed and energy is released. 		86.	The bonding in NH ₃ is most (1) H ₂ O (2) NaCl	similar (3) (4)	to the bonding in MgO KF
			87.	 Which substance is a good conductor of electricity in both the solid and liquid phases? (1) a metallic substance (2) an ionic substance (3) a network substance (4) a molecular substance 		
				en e		