8.2

THE NATURE OF COVALENT BONDING

Section Review

Objectives

- State a rule that usually tells how many electrons are shared to form a covalent bond
- Describe how electron dot formulas are used
- Predict when two atoms are likely to be joined by a double or a triple covalent bond
- Distinguish between a single covalent bond and other covalent bonds
- Describe how the strength of a covalent bond is related to its bond dissociation energy
- Describe how resonance structures explain bonding
- Identify some exceptions to the octet rule

Vocabulary

- single covalent bond
- structural formulas
- unshared pairs
- double covalent bonds

triple covalent bonds

coordinate covalent bond

- polyatomic ion
- bond dissociation energy
- resonance structures

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

When atoms share electrons to gain the <u>1</u> configuration	1
of a noble gas, the bonds formed are <u>2</u> . A <u>3</u> pair of	2
valence electrons constitutes a <u>4</u> covalent bond. Pairs of	3
valence electrons that are not shared between atoms are called	4
5 Sometimes two or three pairs of electrons may be shared	5
to give6 covalent bonds. In some cases, only one of the	6
atoms in a bond provides the pair of bonding electrons; this is a	7
7 . 8 is required to break covalent bonds between	8
atoms. The total energy required to break the bond between two	9
covalently bonded atoms is known as the <u>9</u> .	10

When it is possible to write two or more valid electron dot

formulas for a molecule or ion, each formula is referred to as a <u>10</u>.

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

11. The modern interpretation of resonance is that electron pairs rapidly flip back and forth between the various electron dot structures.
12. The compound NH₃ contains two double covalent bonds.
13. The chemical formulas of molecular compounds show the number and type of atoms in each molecule.
14. A molecule of bromine has six unshared pairs of electrons.
15. Carbon forms four single covalent bonds with other atoms.
16. A bond in which one atom contributes both bonding electrons is called a polyatomic covalent bond.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A	Column B
17.	single covalent bond a	a chemical formula that shows the arrangement of atoms in a molecule or a polyatomic ion
18.	structural formula b	• the amount of energy required to break a covalent bond between atoms
19.	bond dissociation contract of the energy	a tightly bound group of atoms that has a positive or negative charge and behaves as a unit
20.	polyatomic ion d	a covalent bond in which one atom contributes both bonding electrons
21.	coordinate covalent e	a chemical bond in which only one pair of electrons is shared by two bonded atoms

Part D Questions and Problems

Answer the following in the space provided.

- 22. Draw electron dot structures for each of the following compounds
 - **a.** Br₂
 - **b**. HCN
 - c. NH_4^+