.....

8.3

BONDING THEORIES

Section Review

Objectives

- Identify the difference between atomic and molecular orbits
- Describe how VSEPR theory helps predict the shapes of molecules
- Identify the ways in which orbital hybridization is useful in describing molecules

Vocabulary

- molecular orbitalsbonding orbital
- pi bond

• tetrahedral angle

- VSEPR theory
- hybridization

• sigma bond

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The quantum mechanical model of bonding assumes that

atomic orbitals overlap to produce <u>1</u>. A molecular orbit that

can be occupied by two electrons of a covalent bond is called a _____, whose energy is _____ than that of the atomic orbitals

from which it formed. When two atomic orbitals combine to form

a molecular orbital that is symmetrical around the axis connecting two atomic nuclei, a <u>4</u> bond is formed. When atomic

orbitals overlap side by side, they produce $_5_$ bonds.

Electron dot structures fail to reflect the <u>6</u> shapes of molecules. <u>7</u> states that because electron pairs repel, molecular shape adjusts so the valence-electron pairs are as far apart as possible. Another way to describe molecules that provides information about both molecular bonding and molecular shape is <u>8</u>.

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

9. Unshared pairs of electrons affect the shape of molecules.

- **10.** Molecular orbitals involve pi bonding.
 - **11.** A bonding orbital is a molecular orbital whose energy is higher than that of the atomic orbitals from which it is formed.
 - **12.** With hybridization, several atomic orbitals overlap to form the same total number of equivalent hybrid orbitals.
- **13.** Sigma and pi bonds are found in the same molecule.
- **14.** The methane molecule has four orbitals with tetrahedral angles of 109.5°.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A	Column B
15.	sigma bond a.	states that because electron pairs repel, molecules adjust their shapes so that valence-electron pairs are as far apart as possible
16.	pi bond b.	a process in which several atomic orbitals overlap to form the same number of equivalent hybrid orbitals
17.	VSEPR theory c.	a term used to describe the shape of certain molecules such as CO_2
18.	hybridization d.	a bond formed when two atomic orbitals combine to form a molecular orbital that is symmetrical along the axis connecting the two atomic nuclei
19.	linear molecule e.	a bond in which the bonding electrons are most likely to be found in the sausage-shaped regions above and below the nuclei of the bonded atoms

Part D Questions and Problems

Answer the following in the space provided.

20. Indicate the hybrid orbitals used by each carbon atom in the following compound.

$$\begin{array}{c} H_{3}C - C = C - C \equiv C - CH_{3} \\ | & | \\ H & H \end{array}$$