Experimental [H ₂] (mol/L)		Initial [ICl] (mol/L)	Initial Rate of Reaction (mol/s•L)
1	.30	.20	3.0×10^{-3}
2	.30	.60	9.0×10^{-3}
3	.10	.60	1.0×10^{-3}

1. The above chart contains experimental data obtained from the following reaction:

$$H_2 + 2 \; ICl \rightarrow I_2 + 2 \; HCl$$

What is the experimental rate law for this reaction?

- A) Rate = $k[H_2]/[IC1]$
- B) Rate = $k[H_2][IC1]$
- C) Rate = $k[H_2][IC1]^2$
- D) Rate = $k[H_2]^2[IC1]^2$
- E) Rate = $k[H_2]^2[IC1]$

2. A student collected the initial-rate data in the chart below.

Experiment	Initial [XO] (mol/L)	Initial [O2] (mol/L)	Initial rate of formation of XO ₂ [mol/(L·s)]
1	0.20	0.20	0.40
2	0.80	0.20	6.4
3	0.20	0.40	0.80

What is the experimental rate law for this reaction?

- A) rate = $k [XO]^2 [O_2]^{-1}$
- B) rate = $k [XO][O_2]^{-1}$
- C) rate = $k [XO]^2 [O_2]$
- D) rate = $k [XO] [O_2]^2$
- E) rate = $k [XO]^2 [O_2]^2$