Electric Current

Electric Current is charge in motion

Electric Current from batteries

In 1780s Volta found certain combinations of metals, such as zinc and silver, produced an electric current that caused a separation of the leaves of an electroscope.

Example: Carbon electrode and zinc electrode in sulfuric acid. Zinc ions enter the acid; electrons flow from zinc electrode (-) to carbon electrode (+). Thus, a potential difference is established between the two electrodes.

Electric Current

- Electric current is "FLOW OF CHARGE."
- 1 amp = 1 Coulomb/sec

- Analogy: speed = distance/time
- flow of traffic = cars/time
- current flow = charge/time

How many electrons are in 1 amp?

1 amp = 1 Coulomb/1 second

• How many electrons in 1 Coulomb?

Example

 What is the electric current in a conductor if 240 coulombs of charge pass through it in 1.0 minute?

Direction of Current

- When the conventions of positive and negative charge were invented 200 years ago, it was assumed that POSITIVE charge flowed in a wire. So, conventional flow of charge is using positive charge flowing from positive to negative.
- Electron current is the opposite direction of conventional current.

Potential Difference drives an electric current

- To produce an electric current in a circuit, you need a potential difference.
- Example: battery
- Analogy: flow of water acted upon by gravity.
- the greater the height, the greater
 the current. An increase in height
 causes a greater flow of water.

Resistance

- Materials offer "resistance" to the flow of current.
- Analogy: resistance to current is like friction.
- like friction, resistance causes heat
 which is a loss of energy.

Resistance = Voltage/Current

- Resistance is measured in ohms.
- R = V/C
- Ohms = volts/amps

Good Conductors (low resistivity)

- Silver (1.59 x 10⁽⁻⁸⁾ resistivity)
- Copper (1.68 x 10⁽⁻⁸⁾ resistivity)
- Gold (2.44 x 10⁽⁻⁸⁾ resistivity)

Semiconductors

- Carbon (3 60 x 10⁽⁻⁵⁾ resistivity)
- Germanium (1 500) x 10⁽⁻³⁾ resistivity)
- Silicon (0.1 10 resistivity)

Insulators (poor conductors)

- Glass
- Hard rubber

Minimize Resistance in a wire

- Thick
- Short
- cold

Maximize Resistance in a wire

- Long
- Thin
- hot

Resistance Calculation

- Resistance = (resistivity)(length/area)
- Example: calculate the resistance of an aluminum wire that is 0.20 meter long and has a cross sectional area of 1.00 x 10⁽⁻³⁾ square meter.
- R = (resistivity)(length/area)
- = 2.65 x 10^(-8) (.20 m)/(1.00 x 10^(-3))
- = 5.30×10^{-6}

Ohm's Law

- V = I x R
- I = V/R
- R = V/I

Example

- If the potential difference across a 30 ohm resistor is 10 volts, what is the current?
- IR = V so, I = V/R = 10/30 = 0.33 amps

Group Activity

 Calculate the missing parameter using Ohm's Law (IR = V)

Volts Resistance (ohms) Current (amps)

96

- 1. 120
 40
 ?

 2. 120
 ?
 8
- 3. 120
 ?
 50

 4. ?
 6
 18

24

• 5. ?