Acceleration

$$A = (Vf - Vi)/(tf - ti)$$

A = (Vf - Vi)/(tf - ti)

Vi (m/s)	Direct'n Vi	Vf (m/s)	A (m/s^2)	Direct'n A	Speed up/slo down
15		0			
- 10		0			
1		5			
30		30			
-25		-5			
-11		-15			

- If Acceleration and Velocity have the same sign, the motion is speeding up.
- If Acceleration and Velocity have opposite signs, the motion is slowing down.
- If Acceleration and Velocity are at 90 degrees with respect to each other, the motion is circular motion.

Motion in a straight line and uniformly accelerated motion

- 1. Vavg = (Vi + Vf)/2
- 2. Vf = Vi + A x t
- 3. $D = Vixt + \frac{1}{2}xAxt^{2}$
- 4. $Vf^2 = Vi^2 + 2 x A x D$

• (N.B. #4 has no time; #3 has time)

Dropping a stone off a cliff

- $D = Vi x t + \frac{1}{2} x A t^2$
- Vi = 0
- Top of cliff set at zero and ground below at negative position, g = -9.8 m/s²
- $-D = \frac{1}{2} \times (-9.8) \times t^2$ t = sq rt (D/4.9)