\qquad
\qquad
\qquad

Chapter 3: Constructions

Topic 3: Incenter \& Incircle
Recall: An \qquad is a line segment with one endpoint on any vertex of a triangle that extends to the opposite side of the triangle and bisects the angle. Since there are three vertices in every triangle, there are \qquad angle bisectors of a triangle. The point of concurrency of the angle bisectors of a triangle is known as the \qquad of a triangle. To construct the incenter of a given triangle construct the angle bisector on \qquad vertices. The incenter will always be located \qquad a given triangle. The point of concurrency (the incenter) is the center of the circle that is inscribed within a given triangle. This circle is called the \qquad _.

Construction \#6: Incenter \& Incircle

Using a compass and a straightedge, construct the incenter and incircle of $\triangle A B C$.

Name: \qquad Date: \qquad
\qquad
The Incenter:

- The incenter is formed by connecting the three angle bisectors
- The three angle bisectors of a triangle are concurrent at a point equidistant from the sides of a triangle. These are the radii of the incircle

Directions: Using the above information, complete the following questions. Don't forget justifications.

1) The incenter of $\triangle T U S$ is located at point P. If $C P=4 x+9$ and $P B=6 x-11$, find the value of x and the length of CP and PD. Justify all calculations.

2) Point P is the incenter of $\Delta F G H$. If $\mathrm{m}<\mathrm{TFP}=3 \mathrm{x}+15$, and $\mathrm{m}<U F P=5 \mathrm{x}-13$, find the value of x . Justify all calculations.

3) The incenter of $\triangle C D E$ is point P. If $m<S D P=7 x+5$ and $m<U D P=9 x-5$, find the value of x and $\mathrm{m}<$ SDP. Justify all calculations.

4) P is the incenter of $\triangle X Y Z$. If $\mathrm{m}<\mathrm{SZP}=7 \mathrm{x}+7$, and $\mathrm{m}<S Z T=16 \mathrm{x}+4$, find the value of x and $\mathrm{m}<$ SZT. Justify all calculations.

\qquad
\qquad
\qquad

Chapter 3: Constructions
 Topic 3 Homework: Incenter \& Incircle

1) Construct the incenter of $\triangle T O M$.
2) Construct an equilateral triangle to DE.

3) P is the incenter of $\triangle X Y Z$. If $\mathrm{m}<\mathrm{RYP}=2 \mathrm{x}+20$, and $\mathrm{m}<\mathrm{TYP}=\mathrm{x}+40$, what is the $m<$ RYT?
(1) 20
(2) 40
(3) 60
(4) 120

\qquad 4) Which geometric principle is used in the construction shown below?
(1) The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
(2) The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
(3) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
(4) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

\qquad 5) The incenter of $\triangle A B C$ is located at point G. If $E G=3 x+14$ and $\mathrm{DG}=5 \mathrm{x}-8$, what is the length of GF?
(1) 5
(2) 11
(3) 22
(4) 47

\qquad 6) A straight edge and compass were used to create the following construction.

Which statement is false?
(1) $m<A B D=m<D B C$
(2) $\frac{1}{2}(m<A B C)=m<A B D$
(3) $2(m<D B C)=m<A B C$
(4) $2(m<A B C)=m<C B D$

\qquad
\qquad
\qquad
\qquad 7) The diagram shows the construction of an equilateral triangle.

Which statement(s) justifies this construction?
(1) $<A+<B+<C=180$
(2) $<A=\angle B=<C$
(3) $A B=B C=A C$
(4) $A B+B C>A C$

Review Section!!

\qquad 8) What is the slope of a line perpendicular to the line whose equation is $3 x-7 y+14=0$?
(1) $\frac{3}{7}$
(2) $-\frac{7}{3}$
(3) 3
(4) $-\frac{1}{3}$
\qquad 9) Line m and point P are shown in the graph. Which equation represents the line passing through P and parallel to line m ?
(1) $y-3=2(x+2)$
(2) $y+2=2(x-3)$
(3) $y-3=-\frac{1}{2}(x+2)$
(4) $y+2=-\frac{1}{2}(x-3)$

\qquad 10) In $\triangle A B C, m<A=3 \mathrm{x}+1, \mathrm{~m}<\mathrm{B}=4 \mathrm{x}-17$, and $\mathrm{m}<\mathrm{C}=5 \mathrm{x}-20$. Which type of triangle is $\triangle A B C$?
(1) right
(2) scalene
(3) isosceles
(4) equilateral
\qquad 11) Transversal EF intersects $A B$ and $C D$ as shown. Which statement could always be used to prove $\mathrm{AB} / / \mathrm{CD}$?
(1) $<2 \cong<4$
(2) <3 and <6 are supplementary
(3) $<7 \cong<8$
(4) <1 and <5 are supplementary

12) AD is a perpendicular bisector of triangle ABC . If $\mathrm{BD}=5 \mathrm{x}-10, \mathrm{DC}=3 \mathrm{x}+8$, and $\angle A D B=8 y+4$, find the value of x and y.
Sketch \& Label
Justify
Work

