\qquad
\qquad
\qquad

Chapter 8: Intro to Trigonometry
 Topic 7: Degrees and Radians

DO NOW:

Using a QSFR chart, find the exact value of $\cos \left(240^{\circ}\right)$

Working with Degrees:

Degree measures are not typically expressed as decimals. Instead, we use a system of \qquad and \qquad , just like a clock! For the purposes of this class, we will just work with minutes.

The number that we associate with minutes is \qquad . Minutes are abbreviated as \qquad
For example: 25 degrees and 18 minutes would be written as $25^{\circ} 18^{\prime}$

Steps to convert a decimal degree measure to degree/minute form:

Example: What is the value of 74.3039° to the nearest minute?

1. Round to the nearest hundreth
2.
3. Multiply the decimal part by 60
4.
5. Combine with the whole number \&
6. write in Degree/Minute form

You Try:

Examples: What is the value of the given degree measure to the nearest minute?

1. 25.0864°
2. 200.1034°
3. 145.907°
4. 18.997°
\qquad
\qquad Period: \qquad

Working with Radians:

Radians are another set of numbers that measure angles on the coordinate plane. Instead of being based on a circle measure of \qquad like degrees, it is based off of a full rotation equal to \qquad .

Let's re-look at the coordinate plane and unit circle, and label radians:

The number one relationship between degrees and radians is:

To convert from Degrees to Radians:
To convert from Radians to Degrees:

Examples:
Convert the following into radians:
63°
30°
315°

Convert the following into degrees:

$$
\frac{3 \pi}{2} \quad \frac{8 \pi}{10} \quad \frac{\pi}{20}
$$

