
FUNCTION NOTATION COMMON CORE ALGEBRA II HOMEWORK

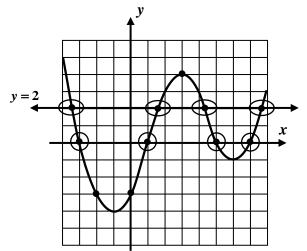
FLUENCY

1. Without using your calculator, evaluate each of the following given the function definitions and input values.

(a)
$$f(x) = 3x + 7$$

 $f(-4) = 3(-4) + 7 = -12 + 7 = -5$
 $f(2) = 3(2) + 7 = 6 + 7 = 13$
(b) $g(x) = 3x^2$
 $g(2) = 3(2)^2 = 3(4) = 12$
 $g(-3) = 3(-3)^2 = 3(9) = 27$
(c) $h(x) = \sqrt{x-5}$
 $h(41) = \sqrt{41-5} = \sqrt{36} = 6$
 $h(14) = \sqrt{14-5} = \sqrt{9} = 3$

2. Using **STORE** on your calculator, evaluate each of the following more complex functions.


3. Based on the graph of the function y = g(x) shown below, answer the following questions.

(a) Evaluate
$$g(-2), g(0), g(3)$$
 and $g(7)$.
 $g(-2) = -3$
 $g(0) = -3$
 $g(3) = 4$
 $g(7) = 0$

(b) What values of x solve the equation g(x) = 0

 $\{-3, 1, 5, 7\}$ Shown circled on the graph.

(c) Graph the horizontal line y = 2 on the grid above and label.

(d) How many values of x solve the equation g(x) = 2?

There are four solutions to this equation. They would be the *x*-coordinates of the intersection points enclosed in the diagram above using ovals/ellipses.

APPLICATIONS

- 4. Ian invested \$2500 in an investment vehicle that is guaranteed to earn 4% interest compounded yearly. The amount of money, *A*, in his account as a function of the number of years, *t*, since creating the account is given by the equation $A(t) = 2500(1.04)^{t}$.
 - (a) Evaluate A(0) and A(10).

$$A(0) = 2500(1.04)^0 = 2500$$

 $A(10) = 2500(1.04)^{10} = 3700.61$

(c) Using tables on your calculator, determine, to the nearest whole year, the value of t that solves the equation A(t) = 5000. Justify your answer with numerical evidence.

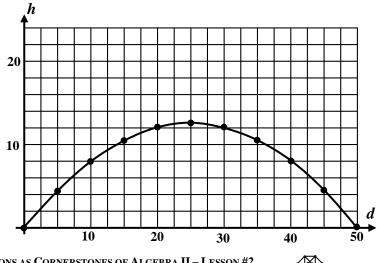
	у	x
	4966.2	17.5
	4985.7	17.6
18 years	5005.3	17.7
	5025.0	17.8

(b) What do the two values that you found in part(a) represent?

A(0) represents the initial amount invested

A(10) represents the amount after 10 years

(d) What does the value of *t* that you found in part(b) represent about Ian's investment?


This indicates that it takes approximately 18 years for Ian's investment to double in value.

5. A ball is shot from an air-cannon at an angle of 45° with the horizon. It travels along a path given by the equation $h(d) = -\frac{1}{50}d^2 + d$, where *h* represents the ball's height above the ground and *d* represents the distance the ball has traveled horizontally. Using your calculator to generate a table of values, graph this

function for all values of d on the interval $0 \le d \le 50$. Look at the table to properly scale the y-axis.

What is the maximum height that the ball reaches? At what value of d does it reach this height?

The maximum height is 12.5 which is reached at a *d* value of 25.

